Taxayuntin I from Taxus Yunnanensis

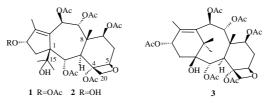
Jin Yun ZHOU*, Pei Ling ZHANG, Wei Ming CHEN and Qi Cheng FANG

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: Taxayuntin I, a new 11 ($15\rightarrow 1$)abeotaxane, was isolated from the leaves and stems of *Taxus yunnanensis*. Its structure was elucidated on the basis of spectroscopic data.

Keywords: Taxus yunnanensis; taxoids; abeotaxane; taxayuntin I.

Since excellent antitumor activity and unique mechanism of action of paclitaxel (taxol[®]) were discovered, chemical studies on *Taxus* species have been extensively carried out^{1,2}. About 300 taxoids have been isolated from Genera *Taxus* and *Austrotaxus* plants³. In search for bioactive taxoids and precursors for semisynthesis of taxol we previously obtainted two taxoids from the leaves and stems of *Taxus yunnanensis*⁴. Further investigation on the extract of this plant led to the isolation of a new 11 (15 \rightarrow 1) abeotaxane, named taxayuntin I. In this paper the structure elucidation of taxayuntin I (1) is described.


Taxayuntin I (1), mp. 259-260 °C (MeOH), $[\alpha]_D^{29}+25.5$ (c, 0.048, CHCl₃), was obtained as colourless needles. The FAB-MS spectrum showed a $[MH]^+$ ion peak at m/z 653. Its molecular formula, $C_{32}H_{44}O_{14}$, was established by FAB-MS, ¹H and ¹³C NMR spectroscopy. IR absorption at 3480, 1740 and 1725 cm⁻¹ indicated the presence of hydroxy and ester groups respectively. The ¹H NMR spectrum of **1** (**Table 1**) showed the signals of four methyl groups of taxane skeleton (δ 1.14, 1.15, 1.66 and 1.82). The presence of an oxetane ring was suggested by the signals of C-20 methylene group at

4.37 and 4.47 (ABq, J=7.4Hz) and δ_C 74.61 in the NMR spectra. The 5/7/6 membered ring skeleton was deduced from the upfield resonance of Me-16 at δ 1.14, and the absence of a carbonyl group signal at C-9⁵. This was supported by the unusual upfield resonance of C-1 (δ 67.88) and the downfield resonance of C-15 (δ 75.32)⁴. Six acetyl groups appeared at δ_H 1.96, 1.99. 2.02, 2.08, 2.09 and 2.20. The presence of five oxymethine groups was concluded by the observation of the ¹H NMR signals between δ 5.48~6.25. A pair of doublets at δ 6.02 and 6.25 (J=9.6 Hz) were assigned to H-9 β and H-10 α . A doublet at δ 6.09 coupled with H-3 α at δ 2.92 (J=7.9 Hz) was attributed to H-2 β . Two triplets at δ 5.48 (J=7.6 Hz) and 5.61 (J=7.6 Hz) were due to H-7 α and H-13 β respectively. Thus it was deduced that acetoxy groups located at 2 α , 7 β , 9 α , 10 β and 13 α . The remaining acetoxy group was connected to C-4 α . On acetylation with acetic anhydride-pyridine at room temperature, taxayuntin H (2)⁶ gave a monoacetate, the ¹H NMR data for which was completely identical with those described

for **1**. Thus the structure of taxayuntin I was assigned to be **1**. By comparison of the NMR spectra of **1** with those of baccatin IV (3)^{7, 8}, both compounds possess the same substituents and differ only in skeleton, but compound **1** showed the remarkable downfield shift of H-2 ($\Delta \delta 0.47$) and C-13 ($\Delta \delta 8.3$) and the upfield shift of H-13 ($\Delta \delta 0.59$) besides H-16, C-1 and C-15, which is completely consistent with the 5/7/6 membered ring skeleton^{3, 5.9}.

Table 1. ¹H (500 MHz) and ¹³CNMR (125 MHz) spectral data of compound 1 (δ, CDCl₃)

Position	Н	С	DEPT	Position	Н	С	DEPT
1		67.88	S	15		75.32	s
2	6.09 d (7.9)	68.15	d	16	1.14 s	25.13	q
3	2.92 d (7.9)	43.59	d	17	1.15 s	27.60	q
4		79.41	s	18	1.82 brs	11.71	q
5	4.97 d (7.8)	84.72	d	19	1.66 s	12.49	q
6a	2.52 dt (15.5, 7.6)	34.73	t	20a	4.37 d (7.4)	74.61	t
6b	1.87 m			20b	4.46 d (7.4)		
7	5.48 t (7.6)	70.55	d	COCH ₃	2.10 s	20.65	q
8		44.61	S		2.09 s	20.71	q
9	6.02 d (9.6)	76.50	d		2.08 s	21.02	q
10	6.25 d (9.6)	68.15	d		2.02 s	21.34	q
11		135.95	S		1.99 s	21.58	q
12		147.15	S		1.96 s	21.89	q
13	5.61 t (7.6)	78.72	d	COCH3		167.63, 169.05	S
14a	2.27 m	36.79	t			169.64, 169.68	S
14b	1.68 dd (14.6, 7.9)					170.23, 170.61	S

References

- 1. M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon and A. P. McPhail, T. J. Am. Chem. Soc. **1971**, 93 (9), 2325.
- 2. G. Appendino. Natural product reports, 1995, 12 (4), 349.
- 3. Chief editor: Z.Y. Song, *Modern Research on Chinese Medicinal Herbs.* Vol. IV. Beijing: Peking Union Medical College & Beijing Medical University Joint Press, in press.
- 4. C. Rao, J. Y. Zhou, W. M. Chen, Y. Lu and Q. T. Zheng, Chin. Chem. Letters 1993, 4 (8), 693.
- 5. J. Y. Zhou and Q. C. Fang, Acta Botanica Sinica 1997, 39 (5), 467.
- 6. J. Y.Zhou, P. L. Zhang, W. M. Chen and Q. C. Fang, Phytochemstry, 1998, 48 (8), 1387.
- 7. D. P. Della Casa de Marcano and T. G. Halsall, J. Chem. Soc., Chem. Commun, 1975, (10) 365.
- 8. A. C. Rojas, D. De Mendez, B. Mendez and J. De mendez, Org. Magn. Reson, 1983, 21 (4), 257.
- 9. Chief editor: Z.Y. Song, *Modern Research on Chinese Medicinal Herbs*, Vol. III. Beijing: Peking Union Medical College & Beijing Medical University Joint Press, **1997**, 327.

Received 9 July 1998